Multilevel Selectivity in the Mild and High-Yielding **Chlorosilane-Induced Cleavage of Carbamates to Isocyanates**

Pek Y. Chong, Slawomir Z. Janicki, and Peter A. Petillo*

Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801

Received September 8, 1998

The silane-induced cleavage of a series of N-p-tolylcarbamates and N-phenethylcarbamates to isocyanates has been investigated as a function of chlorosilane, carbamate substituent, and reaction conditions. Reaction yields were determined from the isolated ureas, which were formed by trapping the corresponding isocyanates with isobutylamine. Under room-temperature conditions, multilevel selectivity in carbamate activation has been demonstrated. This selectivity together with the generality of the methodology enhances the utility of carbamates as synthetic intermediates and protecting groups. To demonstrate the effectiveness of this selectivity, a series of biscarbamates were selectively monoactivated to isocyanates in excellent yields.

Carbamates that act as useful synthetic intermediates and protecting groups find widespread use in organic synthesis. For example, the *tert*-butoxycarbonyl (*t*-Boc) group is one of the most frequently used amino protecting groups.¹ However, the general manipulation of carbamates is limited in both quantity and scope.^{2–5} Mild and high-yielding methods for the cleavage of carbamates, which are both selective and general in scope, would represent a set of novel and useful transformations in organic synthesis.^{4,6,7} The chlorosilane-induced cleavage of carbamates to isocyanates has previously been shown to proceed under relatively mild conditions.⁸⁻¹¹ Herein, we report a systematic study of the reactivity of a series of substrates with various chlorosilanes under mild reaction conditions. This study uses the dependence of the ease of cleavage on the reagents and substrates to effect selective carbamate cleavage. Thus, we demonstrate for the first time, multi-level selectivity in the cleavage of a range of carbamates under the mildest conditions yet reported.

The methodology involves the treatment of a carbamate with a chlorosilane in the presence of triethylamine to produce an isocyanate 5 and an alkoxysilane 6 (Scheme 1). The reaction is thought to proceed by formation of the N-silylated species 3, which was previously isolated.9 Although silane-induced carbamate cleavage is known, the full scope and utility of the reaction were never explored in depth.¹²

(1) Green, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; John Wiley & Sons: New York, 1991; pp 315–348. (2) Kocienski, P. J. Protecting Groups; Georg Thiem Verlag: Stut-

(3) Shapiro, G.; Marzi, M. J. Org. Chem. 1997, 62, 7096.
(4) Ozaki, S. Chem. Rev. 1972, 72, 457.
(5) Valli, V. L. K.; Alper, H. J. Org. Chem. 1995, 60, 257.
(6) Richter, R.; Ulrich, H. In The Chemistry of Cyanates and their Thio Derivatives, Patai, S., Ed.; Wiley: New York, 1977; Part 2, p 619.
(7) Gittos, M. W.; Davies, R. V.; Iddon, B.; Suschitzky, H. J. Chem. Soc., Perkin Trans. 1 1976, 141.
(9) (0) Mirogray V. E.; Suddolaw, V. D.; Karinkay, V. D.; Chatmany, V. E.; Chatmany, V. E.; Suddolawa, V. D.; Karinkay, V. D.; Chatmany, V. E.; Suddolawa, V. D.; Karinkay, V. D.; Chatmany, V. E.; Suddolawa, V. D.; Karinkay, V. D.; Chatmany, V. E.; Suddolawa, V. D.; Karinkay, K. D.; Karinkay, K. D.; Karinkay, K. D.; Karinkay, K. Sarinkay, K. D.; Karinkay, K. J. Chem. Sarinkay, K. J.; Karinkay, K. J.; K

The substrates investigated were the N-arylcarbamates 1 (R = p-MePh-) and the *N*-alkylcarbamates 2 (R= PhCH₂CH₂-), which sterically and electronically alter R'. Cleavage was initiated by adding 1.2 equiv of triethylamine and one of four chlorosilanes (trichlorosilane, methyltrichlorosilane, dichlorodimethylsilane, or chlorotrimethylsilane) to a solution of the substrate in benzene. Three sets of reaction conditions were examined: 70 °C for 4 h, 70 °C for 24 h, and room temperature for 24 h. The reaction progress was determined for each carbamate using a combination of GC-MS,¹³ ¹H NMR spectroscopy,¹⁴ and isolation of a urea derivative of the isocyanate.¹⁵ The degree of cleavage was easily followed due to the absence of any side reactions. Representative selections of our results for the cleavage of the N-ptolylcarbamates 1 and N-phenethylcarbamates 2 are shown in Table 1.

^{*} To whom correspondence should be attached. Tel.: (217) 333-0695. Fax: (217) 244-8559. E-mail: alchmist@alchmist.scs.uiuc.edu.

tgart, 1994.

^{(8) (}a) Mironov, V. F.; Seludjakov, V. D.; Kozjukov, V. P.; Chatuncev,
G. D. Dokl. Akad. Nauk. SSSR. 1968, 181, 115. (b) Mironov, V. F.;
Kozyukov, V. P.; Orlov, G. I. J. Gen. Chem. USSR (Engl. Transl.) 1981, 1960, KUZYUKOV, V. F., OTIOV, G. I. J. Gell. Chem. USSR (Engl. Transl.) 1981, 51, 1555. (c) Bal'on, Y. G. J. Org. Chem. USSR (Engl. Transl.) 1980, 12, 2233. (d) Casara, P.; Metcalf, B. W. Tet. Lett. 1978, 1581. (e) Donaldson, R. E.; Saddler, J. C.; Byrn, S.; McKenzie, A. T.; Fuchs, P. L. J. Org. Chem. 1983, 48, 2167.

⁽⁹⁾ In most cases where trimethylchlorosilane was used, considerable (9) In most cases where trimethylchlorosilane was used, considerable heating was required to generate the isocyanate. (a) Greber, G.; Kricheldorf, H. R. Angew. Chem., Int. Ed. Engl. 1968, 7, 941. (b) Kricheldorf, H. R. Angew. Chem. 1972, 84, 107. (c) Kricheldorf, H. R. Synthesis 1970, 649. (d) Kricheldorf, H. R. Liebigs Ann. Chem. 1973, 772. (e) Kricheldorf, H. R. Chem. Ber. 1971, 104, 3146. (10) The use of trichlorosilane requires less heating than that of chlorotrimethylsilane. (a) Pirkle, W. H.; Huske, J. R. J. Org. Chem. 1977, 42, 2781. (b) Pirkle, W. H.; Hoekstra, M. S. J. Org. Chem. 1974, 39, 3904. (c) Pirkle, W. H.; Rinaldi, P. L. J. Org. Chem. 1978, 43, 3803. (11) Wolfbeis, O. S.; Marhold, H. Monatsh. Chem. 1983, 114, 599.

 Table 1. Yields^a (%) for Silane-Induced Cleavage of N-p-Tolylcarbamates 1 and N-Phenethylcarbamates 2 under

 Various Silane and Reaction Conditions

		$HSiCl_3$			$MeSiCl_3$			Me_2SiCl_2			Me ₃ SiCl		
entry	R	70/4	70/24	rt/24	70/4	70/24	rt/24	70/4	70/24	rt/24	70/4	70/24	rt/24
1a	Me	95	91	86	±	100	71 ^b	±	90	6 ^b	0 ^b	0 ^b	_
1e	t-Bu	\pm	90	20^{b}	_	_	0^{b}	-	_	_	-	_	-
1g	CH ₂ CCl ₃	85	88	$72^{b \ d}$	\pm	91	0^{b}	4^{b}	\pm	_	0^{b}	8 ^b	_
$1\mathbf{\check{h}}^c$	<i>p</i> -OMePh	96	85	89	85^{b}	100	90 ^b	51^{b}	89 ^b	26^{b}	37^{b}	68 ^b	7^b
1j ^c	<i>p</i> -NO₂Ph	88	81	78	99	99	100	97	97	99	97	97	98
2b	Ēt	99	86	±	\pm	99	-	\pm	81	-	_	_	-
2d	<i>i</i> -Bu	88	84	88	\pm	97	5^{b}	\pm	±	-	_	_	-
2e	t-Bu	\pm	94	60 ^b	_	_	-	_	_	-	_	_	-
2g	CH_2CCl_3	92	87	±	_	\pm	_	-	0^{b}	_	-	_	-
2 j ^c	<i>p</i> -NO ₂ Ph	97	85	96	100	98	99	99	97	100	86 ^b	88 ^b	97

^{*a*} Yields reported are isolated yields of the urea derivatives. Otherwise, they are ¹H NMR-determined yields. ^{*b*} ¹H NMR-determined yields. ^{*c*} The isolated yields reported for this carbamate were obtained only when ¹H NMR showed complete conversion to the isocyanate. Otherwise, NMR-determined yields are reported. ^{*d*} Isolated yield was 71%. -: Yield estimated by GC–MS <20%. ±: yield estimated by GC–MS was between 20 and 80%. 70/4: 70 °C for 4 h. 70/24: 70 °C for 24 h. rt/24: room temperature for 24 h.

The reactivity of the silane was found to decrease with increasing methyl substitution and decreasing Cl substitution at the silicon atom. This finding is consistent with previous observations that trichlorosilane-induced cleavage occurs at temperatures lower than those observed with chlorotrimethylsilane.^{9,10} Mironov and coworkers have proposed that the increasing Cl substitution introduces competing $p \rightarrow d \pi$ interactions, which leads to a weakening of the N–Si bond, thereby lowering the thermal stability of intermediate **3**.^{8b}

Cleavage of the alkyl carbamates was found to be strongly affected by the steric properties of the alkyl substituent, R'. This conclusion is based on the observed reactivity pattern: $Me \approx Et > i$ -Bu > $CH_2CCl_3 > t$ -Bu. Increasing the steric bulk of R' presumably destabilizes the proposed transition state 4^{9d} due to increased nonbonding interactions between R' and the Si ligands.

Comparison of the reactivities of the aryl carbamates allowed for the assessment of the effect of the electronic character of the substituent. The rate of carbamate cleavage increases with the stability of the aryl oxide anion; the *p*-nitrophenyl carbamate is more reactive than the *p*-methoxyphenyl carbamate. It is clear that the electron-withdrawing nature of the substituent on the phenyl moiety assists in the cleavage, presumably by stabilizing the partial negative charge that develops at the neighboring oxygen atom in the transition state 4. This observation has been reported with the chlorotrimethylsilane-assisted cleavage,9 and our studies found it to be general for the chlorosilanes. Of particular note are the *p*-nitrophenyl carbamates, which were activated to the isocyanates under all of our reaction conditions and represent an easily cleaved isocyanate-masking group that is stable during chromatographic purification.

Our data show that, under mild conditions, selective carbamate cleavage can be achieved by choosing the appropriate silane for the substituents R'. This selectivity has been demonstrated on biscarbamates **7a-d** (Scheme 4), designed using the results in Table 1. The biscarbamates **7a** and **7b** were synthesized by Horner–Wadsworth–Emmons coupling of carbamate aldehyde **11a** with *o*-nitrobenzylphosphonate **12**, simultaneous hydrogenation of the styrene double bond and the nitro group to result in **13**, and carbamoylation of **14** to **7a** and **7b** (Scheme 2).

The anion of the *o*-nitrobenzylphosphonate **12** proved too nucleophilic for the *p*-methoxyphenyl carbamate to survive the reaction conditions and so the Boc protecting

group was used during the Horner–Wadsworth–Emmons coupling in the synthesis of **7c** and **7d** (Scheme 3). Aldehyde **11b** was coupled with the *o*-nitrobenzylphosphonate **12** to yield the *o*-nitrostyrene **15**. The Boc group in **15** was removed with TFA in methylene chloride, and the resulting free amine was carbamoylated to yield **16**. The *o*-nitrostyrene **16** was hydrogenated, and the resulting bibenzylamine was carbamoylated to yield **7c** and **7d**.

The biscarbamates $7\mathbf{a} - \mathbf{d}$ were selectively transformed to the monoisocyanates $8\mathbf{a} - \mathbf{d}$ (Scheme 4, Table 2). The internal selectivities in each case were determined by the isolation of ureas $9\mathbf{a} - \mathbf{d}$. Due to the tendency of some aryl carbamates to undergo aminolysis to produce ureas, the consumption of substrates $7\mathbf{b} - \mathbf{d}$ was monitored by ¹H NMR during the course of the reaction. The presence of the isocyanates in the reaction mixture was subsequently verified by IR spectroscopy.

Selective carbamate cleavages (Table 2) have been effected in excellent yields at room temperature. In biscarbamate **7a**, the methyl carbamate was selectively activated in the presence of the *tert*-butyl carbamate (Scheme 5). Correspondingly, the *p*-nitrophenyl carbamate in **7b** was selectively cleaved over the methyl carbamate using chlorotrimethylsilane to give **9b** in 98% yield. The selective cleavage of the *p*-methoxyphenyl carbamate over the 2,2,2-trichloroethyl carbamate in **7c** was achieved with methyl trichlorosilane and mild heat-

Scheme 4

Table 2.Yields of Urea 9 for the Internal Selective
Cleavage of Biscarbamates 7

entry	silane	R ¹	R ²	yield of 9 (%)
7a	HSiCl ₃	Me	<i>t-</i> Bu	95^{b}
7b ^a	Me ₂ SiCl ₂	<i>p</i> -NO ₂ Ph	Me	98 ^c
7c	MeSiCl ₃	<i>p</i> -MeOPh	CH_2CCl_3	88^d
7 d ^a	Me ₃ SiCl	<i>p</i> -NO ₂ Ph	<i>p</i> -MeOPh	90 ^e

^{*a*} These reactions were determined by ¹H NMR to reach completion, and the presence of the isocyanates was verified by IR spectroscopy. ^{*b*} Conditions: rt, 72 h. ^{*c*} Conditions: rt, 1 h. ^{*d*} Conditions: 40 °C, 53 h. ^{*e*} Conditions: rt, 10 min.

ing at 40 °C to afford **9c** in 88% yield. The ease of *p*-nitrophenyl carbamate cleavage in the presence of the *p*-methoxyphenyl carbamate was demonstrated by the short reaction time for the monoactivation of biscarbamate **7d**. The reaction of biscarbamates **7b**–**d**, carried out in chloroform,¹⁶ suggests that the solvent has little effect on the selectivity of carbamate cleavage and that the results from our survey can probably be extended to reactions in other solvents.

In addition, these results show two levels of selectivity for the *tert*-butyl, methyl, and *p*-nitrophenyl carbamates (**7a** and **7b**) as well as for the 2,2,2-trichloroethyl, *p*-methoxyphenyl, and *p*-nitrophenyl carbamates (**7c** and **7d**). Therefore, in the presence of these sets of three carbamates, the appropriate chlorosilanes can be used to selectively cleave one carbamate at a time under mild conditions.

It is worth noting an important outcome of the selective cleavage of a sterically less demanding carbamate (e.g., R' = Me) over a *t*-Boc-protected amine. This methodology, together with well-known methods for cleaving *t*-Boc-protected amines in the presence of alkyl carbamates, makes the two protecting groups orthogonal. Likewise, the 2,2,2-trichloroethyl carbamate, which is useful for the protection of amino groups due to its facile removal,^{17,18} can act as a protecting group orthogonal to other less sterically demanding alkyl or aryl carbamates.

Scheme 5

OR²

In conclusion, we have demonstrated selectivity in the silane-induced cleavage of carbamates under mild conditions. Moreover, we have illustrated the effectiveness of this selectivity in the monoactivation of biscarbamates to the isocyanates, thereby demonstrating proof-ofconcept.

⁽¹²⁾ The traditional reaction conditions employ chlorotrimethylsilane and high reaction temperatures (>100 $^{\circ}$ C). See ref 9.

⁽¹³⁾ Although accurate quantitative information was not obtained, the GC-MS traces provided us with estimates of the progress of reaction.

Experimental Section

General Experimental Methods. All elemental analyses were performed by the University of Illinois Elemental Analysis Lab. All mass spectrometry data were obtained by the University of Illinois Mass Spectrometry Lab. CH₂Cl₂, Et₃N, and pyridine were distilled from CaH₂ prior to use as reaction solvents. Benzene and THF were distilled from sodium benzophenone ketyl.

Analytical thin-layer chromatography (TLC) was performed using Merck silica gel 60 F254 precoated plates with a fluorescent indicator. Visualization was accomplished by UV illumination and ninhydrin solution. Flash chromatography was performed using silica gel 60 (230-400 mesh) from Merck. 2-(tert-Butyloxycarbonyl)aminobenzyl alcohol (10b) was prepared according to Liu and Hood's procedure.¹⁹ PCC/Al₂O₃ was prepared according to the procedure in Vogel's Textbook of Practical Organic Chemistry.20

General Procedure for the Preparation of Carbamates 1a-j and 2a-j. Carbamates were synthesized by reaction of either *p*-toluidine or phenethylamine with the chloroformate by the following representative procedure, except for the tert-butyl carbamates, 1e and 2e, which were synthesized by the reaction of the amine with 1.1 equiv of (t-Boc)₂O in CH₂Cl₂. All carbamates were characterized by ¹H NMR, ¹³C NMR, mass spectrometry, and elemental analyses and, when possible, further verified by comparison with literature-reported values.

Representative Procedure for the Synthesis of N-p-Tolylcarbamates.²¹ To a stirring solution of *p*-toluidine (2.1 g, 19.62 mmol) and pyridine (1.7 mL, 21.02 mmol, 1.1 equiv) in CH₂Cl₂ (100 mL) was added phenyl chloroformate (2.6 mL, 20.72 mmol, 1.1 equiv) dropwise. The resulting solution was stirred at room temperature for 3 h, washed with water, 5% aqueous HCl and 5% aqueous NaOH, dried (MgSO₄), and evaporated under reduced pressure. The residue was crystallized from EtOAc/hexane to afford phenyl N-p-tolylcarbamate (4.2 g, 94%) as white crystalline needles.

Methyl N-p-tolylcarbamate (1a): mp 94-95 °C (EtOAc/ cyclohexane) (lit.²² mp 96–98 °C). Anal. Calcd for C_9H_{11} -NO2: C, 65.44; H, 6.71; N, 8.48. Found: C, 65.24; H, 6.76; N, 8.43.

Ethyl N-p-tolylcarbamate (1b): purified by distillation bp 95-98 °C/0.15 mmHg; 49-50 °C; (lit.¹⁹ mp 49-51 °C). Anal. Calcd for C₁₀H₁₃NO₂: C, 67.02; H, 7.31; N, 7.82. Found: C, 67.02; H, 7.31; N, 7.84.

Isopropyl N-p-tolylcarbamate (1c): purified by distillation bp 97–98 °C/0.11 mmHg; 50–51 °C (lit.²⁴ mp 51–52 °C). Anal. Calcd for C₁₁H₁₅NO₂: C, 68.37; H, 7.82; N, 7.25. Found: C, 68.46; H, 7.86; N, 7.27.

Isobutyl N-p-tolylcarbamate (1d): mp 49-51 °C; (lit.²⁵ 52.5-53 °C). Anal. Calcd for C₁₂H₁₇NO₂: C, 69.54; H, 8.27; N, 6.76. Found: C, 69.66; H, 8.28; N, 6.79.

tert-Butyl N-p-tolylcarbamate (1e): mp 89-90 °C (cyclohexane) (lit.26 mp 88-88.5 °C, lit.27 mp 91-93 °C). Anal. Calcd for C₁₂H₁₇NO₂: C, 69.54; H, 8.27; N, 6.76. Found: C, 69.54; H, 8.31; N, 6.77.

- (15) Isocyanates were derivatized by reaction with isobutylamine. (16) Reactions of biscarbamates 7b-d were carried out in chloroform due to their poor solubilities in benzene.
- (17) The trichloroethoxycarbonyl group is easily removed by reduction with zinc metal in acetic acid or hot ethanol. See refs 1 and 3.
- (18) Semmelhack, M. F.; Heinsohn, G. E. J. Am. Chem. Soc. 1972, 94. 5139.

Benzyl N-p-tolylcarbamate (1f): mp 79-81 °C (hexane) (lit.²⁸ mp 81-83 °C). Anal. Calcd for C₁₅H₁₅NO₂: C, 74.67; H, 6.27; N, 5.80. Found: C, 74.92; H, 6.43; N, 5.85.

2,2,2-Trichloroethyl-N-p-tolylcarbamate (1g): yield 79%; mp 77-78 °C (hexane); ¹³C NMR (CDCl₃, 126 MHz) δ 151.79, 134.63, 134.04, 129.91, 119.22, 95.53, 74.67, 21.00; ¹H NMR (CDCl₃, 500 MHz) δ 7.30 (br d, 2H, J = 7.8 Hz), 7.14 (br d, 2H, J = 7.9 Hz), 6.83 (br s, 1H), 4.82 (s, 2H), 2.32 (s, 3H); HRMS calcd for C₁₀H₁₀Cl₃NO₂ (M⁺) 280.9777, found 280.9785. Anal. Calcd for C₁₀H₁₀Cl₃NO₂: C, 42.51; H, 3.57; N, 4.96. Found: C, 42.68; H, 3.69; N, 4.85.

p-Methoxyphenyl N-p-tolylcarbamate (1h): yield 90%; mp 158–160 °C (benzene); ¹³C NMR (CDCl₃, 101 MHz) δ 157.29, 144.29, 135.02, 133.52, 129.76, 122.70, 118.94, 114.56, 55.76, 20.95; ¹H NMR (CDCl₃, 500 MHz) δ 7.32 (br d, 2H, J =8.0 Hz), 7.10 (AA'BB', 2H, $J_{AA'} = J_{BB'} = 3.0$ Hz, $J_{AB} = J_{A'B'} =$ 9.0 Hz, $v_A = v_{A'} = 3547.9$ Hz, $v_B = v_{B'} = 3547.9$ Hz), 6.90 (AA'BB', 2H, as above), 6.86 (br s, 1H), 3.80 (s, 3H), 2.32 (s, 3H); HRMS calcd for $C_{15}H_{15}NO_3$ (M⁺) 257.1052, found 257.1059. Anal. Calcd for C₁₅H₁₅NO₃: C, 70.02; H, 5.88; N, 5.44. Found: C, 70.03; H, 5.82; N, 5.48.

Phenyl N-p-tolylcarbamate (1i): mp 114–115 °C (EtOAc/ hexane) (lit.²⁹ mp 113-114 °C, lit.³⁰ mp 115 °C). Anal. Calcd for C₁₄H₁₃NO₂: C, 73.99; H, 5.77; N, 6.16. Found: C, 73.94; H, 5.72; N, 6.18.

p-Nitrophenyl N-p-tolylcarbamate (1j): yield 76%; mp 139-140 °C (benzene) (lit.³¹ mp 135-136 °C); ¹³C NMR (CDCl₃, 126 MHz) & 155.68, 150.47, 145.18, 134.46, 134.24, 129.97, 125.38, 122.31, 119.34, 20.97; ¹H NMR (CDCl₃, 500 MHz) δ 8.44 (*AA*'BB', 2H, $J_{AA'} = J_{BB'} = 3.0$ Hz, $J_{AB} = J_{A'B'} = 9.1$ Hz, v_A = $\nu_{A'}$ = 4125.7 Hz, $\nu_B = \nu_{B'}$ = 3681.0 Hz), 7.37 (AA'*BB*', 2H, as above), 7.32 (br d, 2H, *J* = 7.9 Hz), 7.15 (br d, 2H, *J* = 8.4 Hz), 7.06 (br s, 1H), 2.33 (s, 3H); HRMS calcd for C₁₄H₁₂N₂O₄ (M⁺) 272.0797, found 272.0799. Anal. Calcd for C₁₄H₁₂N₂O₄: C, 61.76; H, 4.44; N, 10.29. Found: C, 61.60; H, 4.30; N, 10.24.

Methyl N-phenethylcarbamate (2a): purified by distillation bp 90-92 °C/0.11 mmHg (lit.32 bp 94-95 °C/0.3 mmHg). Anal. Calcd for C₁₀H₁₃NO₂: C, 67.02; H, 7.31; N, 7.82. Found: C, 66.63; H, 7.27; N, 7.84.

Ethyl N-phenethylcarbamate (2b): purified by distillation bp 100-103 °C/0.16 mmHg (lit.32 bp 100-102 °C/0.15 mmHg); mp 32-34 °C (lit.32 mp 31-34 °C, lit.33 mp 33.5 °C, lit.³⁴ mp 34–35 °C). Anal. Calcd for C₁₁H₁₅NO₂: C, 68.37; H, 7.82; N, 7.25. Found: C, 68.22; H, 7.79; N, 7.24.

Isopropyl N-phenethylcarbamate (2c): purified by distillation bp 98-101 °C/0.16 mmHg (lit.35 bp 115-116 °C/0.6 mmHg). Anal. Calcd for C₁₂H₁₇NO₂: C, 69.54; H, 8.27; N, 6.76. Found: C, 69.36; H, 8.27; N, 6.80.

Isobutyl N-phenethylcarbamate (2d): purified by distillation bp 117-120 °C/0.17 mmHg (lit.36 bp 119-120 °C/0.8 mmHg). Anal. Calcd for $C_{13}H_{19}NO_2$: C, 70.56; H, 8.65; N, 6.33. Found: C, 70.30; H, 8.62; N, 6.40.

tert-Butyl N-phenethylcarbamate (2e): mp 54-55 °C (hexane) (lit.³⁷ mp 54–55 °C, lit.³⁸ mp 55–56 °C). Anal. Calcd

(23) (a) Fujisaki, S.; Tomiyasu, K.; Nishida, A.; Kajigaeshi, S. Bull. Chem. Soc. Jpn. 1988, 61, 1401. (b) Stumpe, J.; Schwetlick, K.; Kuzmin, M. G. J. Prakt. Chem. 1982, 324, 400.

- (24) (a) Baskakow;; Melnikow, H. Zh. Obshch. Khim. 1954, 24, 376. (b) Shulman, S.; Griepentrog, J. A. *Microchem. J.* **1962**, *6*, 179.
 (25) Lovering, E. G.; Laidler, K. J. *Can. J. Chem.* **1962**, *40*, 26.
- (26) Tarbell, D. S.; Insalaco, M. A. Proc. Natl. Acad. Sci. U.S.A. 1967, 57, 233.

- Blaha, K.; Rudinger, J. Collect. Czech. Chem. Commun. 1965, 30, 585.
- (c) Mukaiyama, T.; Akiba, T. Bull. Chem. Soc. Jpn. 1960, 33, 1707.
 (29) Hegarty, A. F.; Frost, L. N. J. Chem. Soc., Perkin Trans. 21973, 82, 1721.
- (30) Eckenroth, R. Chem. Ber. 1890, 23, 698.
- (31) Shawali, A. S.; Harhash, A.; Sidky, M. M.; Hassaneen, H. M.; Elkaabi, S. S. J. Org. Chem. 1986, 51, 3498.
- (32) Bal'on, Y. G.; Moskaleva, R. N.; Nazarenko, T. G. Sov. Prog. Chem. 1977, 43, 100.

(33) Curtius, T.; Jordan, H. J. Prakt. Chem. 1901, 64, 297.

(34) Shriner, R. L.; Child, R. G. J. Am. Chem. Soc. 1952, 74, 549.

⁽¹⁴⁾ For the cleavage of some of the aryl carbamates, the reaction progress was studied by 1H NMR since the substrates react with isobutylamine.

⁽¹⁹⁾ Liu, J.; Hood, R. H. J. Heterocyc. Chem. 1995, 32, 523.

⁽²⁰⁾ Vogel, A. I. Vogel's Textbook of Practical Organic Chemistry, 5th ed.; Longman Scientific and Technical: Essex, England, 1989; p 426.

⁽²¹⁾ All carbamates were synthesized by reaction of either ptoluidine or phenethylamine with the chloroformate by this representative procedure, except for the tert-butyl carbamates, which were (22) (a) ICI Ltd. Patent, DE 2254611; *Chem. Abstr.* **1973**, *79*, 65996.

⁽b) Baldwin, J. E.; Smith, R. A. J. Org. Chem. **1967**, *32*, 3511.

⁽²⁷⁾ Stanley, R. L.; Tarbell, D. S. J. Org. Chem. 1977, 42, 3686. (28) (a) Ruggli, P.; Dahn, H. Helv. Chim. Acta 1944, 27, 1116. (b)

for $C_{13}H_{19}NO_2$: C, 70.56; H, 8.65; N, 6.33. Found: C, 70.28; H, 8.60; N, 6.30.

Benzyl N-phenethylcarbamate (2f): mp 60–62 °C (EtOAc/ cyclohexane); (lit.^{37a} mp 56–58 °C). Anal. Calcd for $C_{16}H_{17}$ -NO₂: C, 75.27; H, 6.71; N, 5.49. Found: C, 75.34; H, 6.71; N, 5.50.

2,2,2-Trichloroethyl N-phenethylcarbamate (2 g): mp 58–59 °C (EtOAc/cyclohexane); ¹³C NMR (CDCl₃, 101 MHz) δ 154.58, 138.49, 128.85, 128.70, 126.64, 74.40, 42.50, 35.92; ¹H NMR (CDCl₃, 500 MHz) δ 7.35–7.29 (m, 2H), 7.25–7.18 (m, 3H), 4.98 (br s, 1H), 4.72 (s, 2H), 3.50(q, 2H, J = 6.7 Hz), 2.85 (t, 2H, J = 7.0 Hz); HRMS calcd for C₁₀H₁₀Cl₃NO₂ (M⁺) 294.9934, found 294.9937. Anal. Calcd for C₁₁H₁₂Cl₃NO₂: C, 44.55; H, 4.08; N, 4.72. Found: C, 44.50; H, 4.04; N, 4.59.

*p***-Methoxyphenyl** *N***-phenethylcarbamate (2h):** yield 94%; mp 87–88 °C (hexane); ¹³C NMR (CDCl₃, 126 MHz) δ 157.15, 155.19, 144.75, 138.80, 129.03, 128.93, 126.83, 122.66, 114.54, 55.79, 42.55, 36.13; ¹H NMR (CDCl₃, 500 MHz) δ 7.36–7.21 (m, 5H), 7.01 (*AA*'BB', 2H, *J*_{AA}' = *J*_{BB'} = 3.0 Hz, *J*_{AB} = *J*_{A'B'} = 8.9 Hz, *v*_A = *v*_{A'} = 3505.2 Hz, *v*_B = *v*_{B'} = 3428.4 Hz), 6.86 (AA'BB', 2H, as above), 4.98 (br s, 1H), 3.79 (s, 3H), 3.53 (q, 2H, *J* = 6.6 Hz), 2.89 (t, 2H, *J* = 6.8 Hz); HRMS calcd for C₁₆H₁₇NO₃ (M⁺) 271.1208, found 271.1202). Anal. Calcd for C₁₆H₁₇NO₃: C, 70.83; H, 6.32; N, 5.16. Found: C, 70.77; H, 6.08; N, 5.14.

Phenyl N-phenethylcarbamate (2i): mp 90–91 °C (EtOAc/cyclohexane) (lit.³⁹ mp 89–90 °C). Anal. Calcd for $C_{15}H_{15}NO_2$: C, 74.67; H, 6.27; N, 5.80. Found: C, 74.56; H, 6.18; N, 5.80.

p-Nitrophenyl *N*-phenethylcarbamate (2j): yield 90%; mp 106–107 °C (benzene); ¹³C NMR (CDCl₃, 126 MHz) δ 156.11, 153.25, 144.91, 138.38, 128.99, 128.98, 127.00, 125.30, 122.14, 42.59, 35.95. ¹H NMR (CDCl₃, 500 MHz) δ 8.23 (*AA*'BB', 2H, *J*_{AA}' = *J*_{BB'} = 3.0 Hz, *J*_{AB} = *J*_{A'B'} = 9.2 Hz, *v*_A = *v*_{A'} = 4112.2 Hz, *v*_B = *v*_{B'} = 3638.7 Hz), 7.37–7.21 (m, 5H), 7.28 (AA'*BB*', 2H, as above), 5.18 (br s, 1H), 5.57 (q, 2H, *J* = 6.7 Hz), 2.91 (t, 2H, *J* = 6.9 Hz); HRMS calcd for C₁₅H₁₄N₂O₄: (M⁺) 286.0954, found 286.0952. Anal. Calcd for C₁₅H₁₄N₂O₄: C, 62.93; H, 4.93; N, 9.79. Found: C, 62.53; H, 4.77; N, 9.68.

General Procedure for the Silane-Induced Cleavage of Carbamates. To a solution of the carbamate (approximately 0.5 mmol) in 2 mL of benzene was added 1.2 equiv of Et₃N and 1.2 equiv of the chlorosilane. The reaction was shaken in a sealed vial and subjected to the appropriate reaction conditions. The isocyanate was trapped by addition of 0.2 mL of isobutylamine and the urea purified by flash column chromatography. All ureas were characterized by ¹H and ¹³C NMR. Purity and composition were verified by elemental analyses and mass spectral analyses.

2-(Methyloxycarbonyl)aminobenzyl Alcohol (10a). To a stirring solution of 2-aminobenzyl alcohol (4.01 g, 32.5 mmol) in 20 mL of dioxane, 20 mL of saturated NaHCO3 solution, and 8 mL of water at 0 $^\circ C$ was added methyl chloroformate (2.5 mL, 32.4 mmol) dropwise. The resulting mixture was stirred at room temperature for 15 h, and then more methyl chloroformate (0.5 mL, 6.5 mmol) was added dropwise while the reaction mixture was cooled to 0 °C. After being warmed to room temperature, the reaction was diluted with brine and extracted with $CHCl_3$ (4×). The organic layers were pooled, dried (MgSO₄), and evaporated under reduced pressure. The residue was chromatographed (1:25 EtOAc/CHCl₃) to afford 10a (5.49 g, 93%) as a light yellow syrup: $^{13}\mathrm{C}$ NMR (CDCl_3, 101 MHz) δ 154.82, 137.78, 129.37, 129.02, 123.65, 121.14, 64.39, 52.54; ¹H NMR (CDCl₃, 400 MHz) δ 7.96 (br s, 1H), 7.89 (br d, 1H, J = 7.1 Hz), 7.31 (td, 1H, J = 7.8, 1.6 Hz), 7.14 (dd, 1H, J = 7.6, 1.5 Hz), 7.03 (td, 1H, J = 7.4, 1.1 Hz), 4.66 (d, 2H, J = 5.7 Hz), 3.75 (s, 3H), 2.54 (t, 1H, J = 5.7 Hz); HRMS calcd for C₉H₁₁NO₃ (M⁺) 181.0739, found 181.0737. Anal. Calcd for $C_9H_{11}NO_3$: C, 59.66; H, 6.12; N, 7.73. Found: C, 59.44; H, 6.15; N, 7.57.

2-(Methyloxycarbonyl)aminobenzaldehyde (11a). To a solution of methyl carbamate **10a** (5.49 g, 30.3 mmol) in 230 mL of CHCl₃ was added PCC/Al₂O₃ (45 g). The reaction mixture was stirred at room temperature for 30 min and then filtered through a bed of silica. The filtrate was concentrated under reduced pressure and chromatographed (300:4 CHCl₃: EtOH) to give **11a** (3.96 g, 73%) as a white solid: mp90–92.5 °C; ¹³C NMR (CDCl₃, 101 MHz) δ 195.22, 154.19, 141.31, 136.14, 122.06, 121.38, 118.30, 52.54; ¹H NMR (CDCl₃, 400 MHz) δ 10.60 (br s, 1H), 9.88 (s, 1H), 8.44 (d, 1H, *J* = 8.7 Hz), 7.60 (m, 2H), 7.15 (td, 1H, *J* = 7.6, 0.9 Hz), 3.79 (s, 3H); HRMS calcd for C₉H₉NO₃: C, 60.33; H, 5.06; N, 7.82. Found: C, 60.41; H, 5.05; N, 7.77.⁴⁰

2-(tert-Butyloxycarbonyl)aminobenzaldehyde (11b). To a solution of 2-(tert-butyloxycarbonyl)aminobenzyl alcohol (10b) (6.72 g, 30.1 mmol) in 350 mL of CHCl₃ was added PCC/ Al_2O_3 (33 g). The reaction mixture was stirred at room temperature for 30 min, after which time TLC indicated that the reaction was incomplete. More PCC/Al₂O₃ (18 g) was added, and the reaction mixture was stirred for another 30 min and then filtered through a bed of silica. The filtrate was concentrated under reduced pressure and chromatographed (300:4 CHCl₃/EtOH) to give a yellow oil that was crystallized from hexane to afford 11b (3.73 g, 56%) as an off-white solid: mp 54.5–56.5 °C; ¹³C NMR ($\breve{C}DCl_3$, 126 MHz) δ 195.26, 153.08, 141.99, 136.28, 136.15, 121.68, 121.39, 118.41, 81.13, 28.44; ¹H NMR (CDCl₃, 500 MHz) δ 10.39 (br s, 1H), 9.89 (s, 1H), 8.45 (d, 1H, J = 8.4 Hz), 7.61 (dd, 1H, J = 7.6, 1.5 Hz), 7.56 (m, 1H), 7.12 (m, 1H), 1.53 (s, 9H); HRMS calcd for $C_{12}H_{15}$ -NO₃ (M⁺) 221.1052, found 221.1058. Anal. Calcd for C₁₂H₁₅-NO3: C, 65.14; H, 6.83; N, 6.33. Found: C, 65.16; H, 6.95; N, 6.18

(2-Nitrobenzyl)phosphonic Acid Diethyl Ester (12). A mixture of 1-(bromomethyl)-2-nitrobenzene (5.35 g, 24.8 mmol) and triethyl phosphite (4.7 mL, 27.4 mmol) was heated in a simple distillation apparatus to 110 °C. Ethyl bromide was collected for 40 min and the reaction mixture was maintained at 110 °C for another 1 h. After being cooled to room temperature, the reaction mixture was purified by Kugehlrohr distillation (150 °C/0.25 mmHg) to give 12 (6.55 g, 97%) as a yellow liquid: ¹³C NMR (CDCl₃, 126 MHz) δ 149.48 (C_q, J_{CP} = 7.0 Hz), 133.31 (CH, $J_{CP} = 4.9$ Hz), 133.10 (CH, $J_{CP} = 2.6$ Hz), 128.14 (CH, $J_{CP} = 4.0$ Hz), 127.39 (C_q, $J_{CP} = 9.0$ Hz), 125.32 (CH, $J_{CP} = 3.5$ Hz), 62.46 (CH₂), 30.57 (CH₂, $J_{CP} = 137.9$ Hz), 16.32 (CH₃, $J_{CP} = 6.2$ Hz); ¹H NMR (CDCl₃, 500 MHz) δ 7.90 (br d, 1H, J = 8.2 Hz), 7.51 (br t, 1H, J = 7.6 Hz), 7.42 (m, 1H, J = 7.8 Hz), 7.37 (m, 1H, J = 7.8 Hz), 3.98 (m, 4H), 3.66 (d, 2H, J = 22.6 Hz), 1.18 (t, 6H, J = 7.0 Hz).⁴³

N-[(2'-nitrostilben-2-yl)phenyl]methylcarbamate (13). To a solution of 12 (2.01 g, 7.4 mmol) in 10 mL of THF at 0 °C was added 7.8 mL of a 1 M solution of NaHMDS in THF dropwise. The reaction mixture was stirred at 0 °C for 10 min, 11a (1.32 g, 7.4 mmol) was then added in one portion, and stirring was continued for another 20 min. The mixture was diluted with 100 mL of Et₂O, washed with brine $(2\times)$, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed (100:3 CHCl₃/EtOH) to yield 13 (1.87 g, 85%) as a yellow solid; ¹³C NMR (CDCl₃, 101 MHz) δ 147.95, 135.14, 133.41, 132.94, 129.28, 128.67, 128.61, 128.48, 127.22, 127.03, 125.29, 124.88, 52.69; ¹H NMR (CDCl₃, 500 MHz) δ 7.99 (dd, 1H, J = 8.2, 1.1 Hz), 7.73 (dd, 2H, J = 7.9, 0.7 Hz), 7.62 (t, 1H, J = 7.6 Hz), 7.55 (br d, 1H, J = 7.7 Hz), 7.48 (d, 1H, J = 16.2 Hz), 7.44 (td, 1H, J = 7.7, 1.4 Hz), 7.33 (td, 1H, J = 7.7, 1.4 Hz), 7.19 (br t, 1H, J = 7.8 Hz), 7.13 (d, 1H, J = 15.9 Hz), 6.65 (br s, 1H), 3.79 (s, 3H); HRMS calcd for C₁₆H₁₄N₂O₄ (M⁺) 298.0954, found 298.0957. Anal. Calcd for C₁₆H₁₄N₂O₄: C, 64.42; H, 4.73; N, 9.39. Found: C, 64.35; H, 4.73; N, 9.29.

N-(2'-aminobibenzyl-2-yl)methylcarbamate (14). A solution of **13** in 30 mL of THF was stirred vigorously under hydrogen (65 psi) with 5% Pd/C for 4 h. The catalyst was filtered off, and the filtrate was concentrated under reduced

⁽³⁵⁾ Merck, E. Patent, DE 817461, 1948.

⁽³⁶⁾ Bernasconi, S.; Comini, A.; Corbella, A.; Gariboldi, P.; Sisti, M. Synthesis **1980**, *5*, 385.

⁽³⁷⁾ Tanaka, K.; Yoshifuji, S.; Nitta, Y. *Chem. Pharm. Bull.* **1988**, *36*, 3125.

pressure to give **14** (1.66 g, 98%) as an off-white residue: mp 85–87 °C; ¹³C NMR (CDCl₃, 101 MHz) δ 144.10, 135.68, 129.89, 129.71, 127.58, 127.14, 126.10, 125.01, 119.50, 116.51, 52.47, 32.52, 30.83; ¹H NMR (CDCl₃, 500 MHz) δ 7.66 (br s, 1H), 7.23 (m, 2H), 7.13 (dd, 1H, J = 7.4, 1.1 Hz), 7.08 (td, 1H, J = 7.6, 1.5 Hz), 6.98 (dd, 1H, J = 7.6, 1.4 Hz), 6.76 (td, 2H, J = 7.5, 1.1 Hz), 6.70 (d, 1H, J = 7.9, 1.1 Hz), 3.74 (s, 3H), 2.89 (*AA*'BB', 2H, $\nu_A = \nu_{A'} = 1156.9$ Hz, $\nu_B = \nu_{B'} = 1117.3$ Hz, $J_{AA'} = J_{BB'} = 14.0$ Hz, $J_{AB} = J_{AB'} = 6.0$ Hz, $J_{AB'} = J_{A'B} = 9.5$ Hz), 3.59 (br s, 2H), 2.79 (AA'BB', 2H, as above); HRMS calcd for C₁₆H₁₈N₂O₂ (M⁺) 270.1368, found 270.1365. Anal. Calcd for C₁₆H₁₈N₂O₂: C, 71.09; H, 6.71; N, 10.36. Found: C, 70.83; H, 6.77; N, 10.38.

N-(2'-(Methylcarbamate)bibenzyl-2-yl)-tert-butylcar**bamate (7a).** To a stirring solution of **14** (0.64 g, 2.3 mmol) in 6 mL of CH₂Cl₂ at room temperature was added (t-Boc)₂O (0.54 g, 2.5 mmol) in one portion. The resulting mixture was stirred at room temperature overnight and then filtered, evaporated under reduced pressure, and recrystallized (EtOAc/ petroleum ether) to yield **7a** (0.71 g, 82%) as a white solid: ¹³C NMR (CDCl₃, 101 MHz) δ 155.13, 153.82, 135.80, 135.46, 132.65, 129.80, 129.71, 127.39, 127.29, 125.41, 125.02, 123.66, 80.47, 52.52, 32.19, 31.96, 28.43; ¹H NMR (CDCl₃, 500 MHz) δ 7.61 (br d, 2H, J = 7.9 Hz), 7.26–7.17 (m, 3H), 7.16–7.10 (m, 2H), 7.08 (td, 1H, J = 7.4, 1.3 Hz), 6.29 (br s, 1H), 6.08 (br s, 1H), 3.72 (s, 3H), 2.87 (AA'BB', 2H, $\nu_{\rm A} = \nu_{\rm A'} = 1436.0$ Hz, $\nu_{\rm B}$ $= v_{B'} = 1428.7$ Hz, $J_{AA'} = J_{BB'} = 15.0$ Hz, $J_{AB} = J_{A'B'} = 6.5$ Hz, $J_{AB'} = J_{A'B} = 9.0$ Hz), 2.86 (AA'BB', 2H, as above), 1.48 (s, 9H); HRMS calcd for $C_{21}H_{26}N_2O_4$ (M⁺) 370.1893, found 370.1887. Anal. Calcd for C21H26N2O4: C, 68.09; H, 7.07; N, 7.56. Found: C, 67.94; H, 7.10; N, 7.32.

N-(2'-(Methylcarbamate)bibenzyl-2-yl)-p-nitrophenylcarbamate (7b). A mixture of 14 (0.64 g, 2.4 mmol), pnitrochloroformate (0.48 g, 2.4 mmol), and 0.20 mL of pyridine in 6.5 mL of CH_2Cl_2 was stirred at room temperature overnight. The reaction mixture was diluted with 100 mL of CHCl₃, washed with 1% KHSO₄ (pH \sim 4), dried (MgSO₄), and evaporated under reduced pressure. The yellow residue was recrystallized (EtOAc/petroleum ether) to yield 7b (0.77 g, 74%) as a white solid: mp 157-161 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.26 (d, 2H, J = 9.0 Hz), 7.68 (br d, 1H, J = 6.0 Hz), 7.51 (br d, 1H, J = 7.0 Hz), 7.35 (d, 2H, J = 8.5 Hz), 7.30-7.17 (m, 4H), 7.14 (d, 2H, J = 4.4 Hz), 6.91 (br s, 1H), 6.21 (br s, 1H), 3.71 (s, 3H), 3.03 (*AA*'BB', 2H, $\nu_A = \nu_{A'} = 1514.5$ Hz, ν_B $= v_{B'} = 1479.3$ Hz, $J_{AA'} = J_{BB'} = 16.0$ Hz, $J_{AB} = J_{A'B'} = 6.5$ Hz, $J_{AB'} = J_{A'B} = 7.5$ Hz), 2.96 (AA'BB', 2H, as above); HRFABMS calcd for $C_{23}H_{22}N_3O_6$ (M + H)⁺ 436.1509, found 436.1509. Anal. Calcd for C₂₃H₂₁N₃O₆: C, 63.44; H, 4.86; N, 9.65. Found: C, 63.25; H, 4.88; N, 9.52.44

N-[(2'-Nitrostilben-2-yl)phenyl]-tert-butylcarbamate (15). To a solution of 12 (2.00 g, 7.3 mmol) in 10 mL of THF at 0 °C was added 7.7 mL of a 1 M solution of NaHMDS in THF dropwise. The reaction was stirred at 0 °C for 10 min, 11b (1.63 g, 7.4 mmol) was added in one portion, and the reaction mixture was allowed to warm to room temperature overnight. The reaction mixture was diluted with 100 mL of CHCl₃, washed with brine $(2\times)$, dried (MgSO₄), and evaporated under reduced pressure. The yellow residue was recrystallized (EtOAc/petroleum ether) to yield 15 (2.00 g, 80%) as yellow crystals: mp 130–132 °C; $^{13}\mathrm{C}$ NMR (CDCl₃, 126 MHz) δ 135.78, 133.47, 133.22, 129.41, 129.16, 128.83, 128.56, 127.55, 127.15, 125.04, 124.86, 28.50; ¹H NMR (CDCl₃, 500 MHz) δ 8.00 (dd, 1H, J = 8.2, 1.2 Hz), 7.76 (d, 2H, J = 7.7 Hz), 7.63 (t, 1H, J = 7.7 Hz), 7.54 (br d, 1H, J = 7.6 Hz), 7.48 (d, 1H, J =16.1 Hz), 7.45 (td, 1H, J = 7.7, 1.4 Hz), 7.32 (td, 1H, J = 7.8, 1.5 Hz), 7.16 (br t, 1H, J = 7.6 Hz), 7.14 (d, 1H, J = 16.0 Hz), 6.47 (br s, 1H), 1.53 (s, 9H); HRMS calcd for C₁₉H₂₀N₂O₄ (M⁺) 340.1423, found 340.1417. Anal. Calcd for C19H20N2O4: C, 67.05; H, 5.92; N, 8.23. Found: C, 67.12; H, 5.73; N, 8.01.

N-[(2'-Nitrostilben-2-yl)phenyl]-*p***-methoxyphenylcarbamate (16).** A solution of **15** (1.93 g, 5.7 mmol) in 10 mL of CH₂Cl₂ and 5 mL of TFA was stirred at room temperature. Stirring was continued for 20 min after CO₂ evolution ceased. The reaction mixture was evaporated under reduced pressure to give the corresponding amine as a yellow solid (2.05 g, 5.7 mmol) that was used without further purification.

To a suspension of the above amine in 15 mL of dioxane was added 30 mL of saturated NaHCO₃ slowly, and the rapidly stirred reaction mixture was cooled to 0 °C. p-Methoxyphenyl chloroformate (0.89 mL, 5.9 mmol) was introduced by dropwise addition to the reaction mixture. After CO₂ evolution ceased, stirring was continued at 0 °C for another 30 min. The solution was diluted with water to a final volume of 100 mL. The resultant yellow solid was filtered, washed with water, air-dried, and recrystallized (EtOAc/petroleum ether) to yield 16 as yellow needles (1.69 g, 75%): mp 168-170 °C; ¹³C NMR $(CDCl_3, 101 \text{ MHz}) \delta 157.38, 148.12, 144.28, 134.85, 133.58,$ $132.98,\,129.55,\,128.86,\,128.74,\,128.52,\,128.06,\,127.67,\,125.06,$ 122.61, 114.60, 55.79; ¹H NMR (CDCl₃, 400 MHz) δ 8.01 (dd, 1H, J = 8.3, 1.2 Hz), 7.87 (br s, 1H), 7.77 (dd, 1H, J = 8.0, 1.0 Hz), 7.64 (td, 1H, J = 7.6, 1.0 Hz), 7.57 (br d, 1H, J = 7.3 Hz), 7.52 (d, 1H, J = 16.0 Hz), 7.46 (td, 1H, J = 7.8, 1.3 Hz), 7.36 (td, 1H, J = 6.7, 1.4 Hz), 7.21 (m, 1H), 7.19 (d, 1H, J = 16.4Hz), 7.12 (*AA*'BB', 2H, $\nu_A = \nu_{A'} = 2848.4$ Hz, $\nu_B = \nu_{B'} = 2754.7$ Hz, $J_{AA'} = J_{BB'} = 3.0$ Hz, $J_{AB} = J_{A'B'} = 8.7$ Hz, $J_{AB'} = J_{A'B} = 0$ Hz), 7.00 (br s, 1H), 6.89 (AA'BB', 2H, as above), 3.80(s, 3H); HRFABMS calcd for $C_{22}H_{19}N_2O_5$ (M + H)⁺ 391.1294, found 391.1294. Anal. Calcd for C₂₂H₁₈N₂O₅: C, 67.69; H, 4.65; N, 7.18. Found: C, 67.68; H, 4.66; N, 7.18.

N-(2'-(2,2,2-Trichloroethylcarbamate)bibenzyl-2-yl)-pmethoxyphenylcarbamate (7c). A solution of 16 (0.53 g, 1.4 mmol) in 20 mL of THF was stirred vigorously under hydrogen (60 psi) with 5% Pd/C for 1 h. To the solution at atmospheric pressure were added pyridine (0.12 mL, 1.5 mmol) and 2,2,2-trichloroethyl chloroformate (0.20 mL, 1.4 mmol). The reaction mixture was stirred at room temperature for 30 min, and the catalyst was filtered off and washed with 100 mL CHCl_3. The filtrate was diluted with 100 mL of CHCl_3, washed with 5% aqueous KHSO₄ and saturated aqueous NaHCO₃, dried (MgSO₄), and evaporated under reduced pressure. The white residue was recrystallized (EtOAc/hexane) to yield 7c (0.62 g, 85%) as a white solid: mp 159.5-164.5 °C; ¹³C NMR (CDCl₃, 101 MHz) δ 157.27, 153.01, 144.34, 135.23, 134.60, 130.25, 130.09, 127.75, 127.66, 126.65, 122.64, 114.53, 74.70, 55.80, 32.50; $^1\mathrm{H}$ NMR (CDCl_3, 500 MHz) δ 7.72 (br s, 1H), 7.50 (br d, 1H, J = 7.1 Hz), 7.29-7.18 (m, 5H), 7.14 (br t, 1H, J = 7.4 Hz), 7.06 (AA'BB', 2H, $\nu_A = \nu_{A'} = 3529.0$ Hz, ν_B = $v_{B'}$ = 3437.9 Hz, $J_{AA'}$ = $J_{BB'}$ = 2.5 Hz, J_{AB} = $J_{A'B'}$ = 9.0 Hz, $J_{AB'} = J_{A'B} = 0$ Hz), 6.87 (AA'BB', 2H, as above), 6.67 (br s, 1H), 6.37 (br s, 1H), 4.75 (s, 2H), 3.79 (s, 3H), 2.98 (AA'BB', 2H, $\nu_{\rm A} = \nu_{\rm A'} = 1488.4$ Hz, $\nu_{\rm B} = \nu_{\rm B'} = 1469.1$ Hz, $J_{\rm AA'} = J_{\rm BB'} =$ 14.0 Hz, $J_{AB} = J_{A'B'} = 7.0$ Hz, $J_{AB'} = J_{A'B} = 7.5$ Hz), 2.94 (AA'BB', 2H, as above); HRFABMS calcd for C25H24Cl3N2O5 $(M + H)^+$ 537.0751, found 537.0749. Anal. Calcd for C₂₅H₂₃-Cl₃N₂O₅·?H₂O: C, 54.91; H, 4.42; N, 5.12. Found: C, 55.22; H, 4.27; N, 4.94.

N-(2'-(p-Nitrophenylcarbamate)bibenzyl-2-yl)-p-methoxyphenylcarbamate (7d). A solution of 16 (0.51 g, 1.3 mmol) in 20 mL of THF was stirred vigorously under hydrogen (60 psi) with 5% Pd/C for 1 h. To this solution at atmospheric pressure were added pyridine (0.12 mL, 1.5 mmol) and p-nitrophenyl chloroformate (0.28 g, 1.4 mmol). The reaction mixture was stirred at room temperature for 30 min, and the catalyst was filtered off and washed with 100 mL of CHCl₃. The filtrate was diluted with 400 mL of CHCl₃, washed with 3% aqueous KHSO₄ (100 mL) and saturated aqueous NaHCO₃ (100 mL), dried (MgSO₄), and evaporated under reduced pressure. The white residue was recrystallized (EtOAc/ hexane) to yield 7d (0.61 g, 88%) as a white solid: mp 193-195 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.84 (br d, 1H, J = 5.4Hz), 8.18 (d, 1H, J = 9.0 Hz), 7.63 (br m, 2H), 7.38–7.28 (m, 3H), 7.24–7.14 (m, 4H), 7.01 (AA'BB', 2H, $v_A = v_{A'} = 2802.1$ Hz, $v_{\rm B} = v_{\rm B'} = 2729.0$ Hz, $J_{\rm AA'} = J_{\rm BB'} = 2.5$ Hz, $J_{\rm AB} = J_{\rm A'B'} =$ 8.7 Hz, $J_{AB'} = J_{A'B} = 0$ Hz), 6.82 (AA'BB', 2H, as above), 6.82 (br s, 1H), 6.55 (br s, 1H), 3.76 (s, 3H), 3.00 (br s, 4H); HRFABMS calcd for $C_{29}H_{26}N_3O_7$ (M + H)⁺ 528.1771, found

Selective Monoactivation of Biscarbamates. N-(2'-(tert-Butylcarbamate)bibenzyl-2-yl)isobutylurea (9a). To a solution of 7a (50 mg, 0.13 mmol) in 2 mL of benzene were added Et₃N (23 μ L, 1.2 equiv) and HSiCl₃ (16 μ L, 1.2 equiv). The reaction mixture was shaken and allowed to react in a sealed vial at room temperature for 72 h. The isocyanate was then trapped by the addition of 0.3 mL of isobutylamine. The resultant urea was purified by chromatography (1:7 EtOAc/ CHCl₃) to yield **9a** (52.7 mg, 95%) as a white solid; mp > 320 °C; ¹³C NMR (DMSO-d₆, 101 MHz) & 155.66, 154.16, 137.64, 136.15, 135.93, 131.15, 129.28, 128.70, 126.23, 126.12, 125.02, 122.19, 121.66, 78.65, 46.62, 30.68, 28.56, 28.17, 20.06; ^{1}H NMR (CDCl₃, 500 MHz) δ 7.84 (br d, 1H, J = 8.2 Hz), 7.31 (dd, 1H, J = 7.9, 1.0 Hz), 7.21-7.13 (m, 3H), 7.01 (td, 1H, J= 7.5, 1.3 Hz), 7.00 (td, 1H, J = 7.6, 1.1 Hz), 6.63 (br s, 1H), 6.32 (s, 1H), 6.19 (s, 1H), 5.36 (br s, 1H), 2.90 (m, 2H), 2.88 (*AA*'BB', 2H, $v_A = v_{A'} = 1150.2$ Hz, $v_B = v_{B'} = 1122.5$ Hz, $J_{AA'}$ $= J_{BB'} = 16.0$ Hz, $J_{AB} = J_{A'B'} = 5.5$ Hz, $J_{AB'} = J_{A'B} = 7.5$ Hz), 2.81 (AA'BB', 2H, as above), 1.68 (non, 1H, J = 6.7 Hz), 1.53 (s, 9H), 0.86 (d, 6H, J = 6.7 Hz); HRFABMS calcd for $C_{24}H_{34}N_{3}O_{3}$ (M + H)⁺ 412.2600, found 412.2598. Anal. Calcd for C₂₄H₃₃N₃O₃: C, 70.04; H, 8.08; N, 10.21. Found: C, 69.67; H, 8.11; N, 10.04.

N-(2'-(Methylcarbamate)bibenzyl-2-yl)isobutylurea (9b). To a solution of 7b (48.7 Mg, 0.11 mmol) in 2 mL of CHCl₃ were added Et₃N (31 μ L, 2 equiv) and Me₂SiCl₂ (27 μ L, 2 equiv). The reaction mixture was shaken and allowed to react at room temperature in a sealed vial for 1 h. The reaction was determined by NMR to reach full conversion within this time, and although the isocyanate was not isolated, its presence was confirmed by IR spectroscopy (Ar NCO asymmetric stretch 2275.6 cm⁻¹ (lit.⁴⁵ PhNCO asymmetric stretch \sim 2275 cm⁻¹)). The isocyanate was trapped by addition of 0.3 mL of isobutylamine to form the urea 9b, which was chromatographed (1:4 EtOAc/CHCl₃), washed with 10% NaOH ($2\times$) and water, dried (MgSO₄), and rechromatographed (1:5 EtOAc/ CHCl₃) to yield **9b** (40.3 mg, 98%) as a white solid: ¹³C NMR (DMSO-d₆, 101 MHz) & 155.69, 155.31, 137.61, 135.91, 135.62, 131.20, 129.39, 128.70, 126.38, 126.15, 125.16, 122.30, 121.80, 51.74, 46.65, 30.80, 30.43, 28.58, 20.08; ¹H NMR (CDCl₃, 500 MHz) δ 7.69 (br d, 1H, J = 7.9 Hz), 7.36 (br d, 1H, J = 7.9Hz), 7.24-7.16 (m, 3H), 7.10-7.03 (m, 2H), 6.85 (br s, 1H), 6.51 (s, 1H), 6.12 (s, 1H), 5.21 (br s, 1H), 3.79 (s, 3H), 2.96 (t, 2H, J = 6.1 Hz), 2.86 (AA'BB', 2H, $v_A = v_{A'} = 1454.3$ Hz, $v_B =$ $v_{\rm B'} = 1439.3$ Hz, $J_{\rm AA'} = J_{\rm BB'} = 14.0$ Hz, $J_{\rm AB} = J_{\rm A'B'} = 7.0$ Hz, $J_{\rm AB'} = J_{\rm A'B} = 7.5$ Hz), 2.83 (AA'*BB*', 2H, as above), 1.70 (non, 1H, J = 6.7 Hz), 0.88 (d, 6H, J = 6.5 Hz); HRFABMS calcd for $C_{21}H_{28}N_3O_3 (M + H)^+ 370.2131$, found 370.2131. Anal. Calcd for C₂₁H₂₇N₃O₃: C, 68.27; H, 7.37; N, 11.37. Found: C, 67.99; H, 7.46; N, 11.06.

N-(2'-(2,2,2-Trichloroethylcarbamate)bibenzyl-2-yl)isobutylurea (9c). To a solution of 7c (49.0 mg, 0.091 mmol) in 2 mL of CHCl₃ were added Et₃N (15 μ L, 1.2 equiv) and MeSiCl₃ (13 μ L, 1.2 equiv). The reaction mixture was heated at 40 °C in a sealed vial for 49 h, after which time the reaction was allowed to cool to room temperature and 0.3 mL of isobutylamine was added. The reaction was determined by NMR to reach full conversion within this time. After the isobutylamine was allowed to react with the isocyanate for 1 min, the reaction mixture was poured into a 1:2 solution of 10% HCl/10% (NH₄)₂SO₄. The organic layer was washed with 10% NaOH (2×), dried (MgSO₄), and evaporated under reduced pressure in the presence of silica gel. The silica with adsorbed residue was loaded onto a column, and the residue was chromatographed (1:5 EtOAc/CHCl₃). The product fractions were combined, washed with 10% NaOH ($2\times$) and water, dried (MgSO₄), and concentrated under reduced pressure to yield **9c** (39.2 mg, 88%) as a white solid: mp 206–208 °C; ¹³C NMR (DMSO- d_6 , 101 MHz) δ 155.65, 153.38, 137.60, 136.78, 135.18, 131.01, 129.53, 128.63, 126.50, 126.15, 126.07, 122.35, 122.20, 121.68, 96.19, 73.45, 46.63, 30.75, 30.50, 28.55, 20.08; ¹H NMR (DMSO- d_6 , 400 MHz) δ 9.56 (br s, 1H), 7.76 (d, 1H, J = 8.1 Hz), 7.62 (s, 1H), 7.29 (td, 2H, J = 8.1, 1.6 Hz), 7.23 (td, 1H, J = 7.5, 1.7 Hz), 7.18 (td, 1H, J = 7.3, 1.6 Hz), 7.10 (m, 2H), 6.91 (td, 1H, J = 7.5, 1.3 Hz), 6.55 (t, 1H, J = 5.9 Hz), 4.92 (s, 2H), 2.92 (t, 2H, J = 6.3 Hz), 2.84 (AA'BB', 2H, $\nu_A = \nu_{A'} = 1137.0$ Hz, $\nu_B = \nu_{B'} = 1095.3$ Hz, $J_{AA'} = J_{BB'} = 14.0$ Hz, $J_{AB} = J_{A'B'} = 5.0$ Hz, $J_{AB'} = J_{A'B} = 9.5$ Hz), 2.74 (AA'*BB*, 2H, as above), 1.86 (non, 1H, J = 6.7 Hz), 0.87 (d, 6H, J = 6.7 Hz); HRFABMS calcd for C₂₂H₂₇Cl₃N₃O₃ (M + H)⁺ 486.1118, found 486.1119. Anal. Calcd for C₂₂H₂₆Cl₃N₃O₃: C, 54.28; H, 5.38; N, 8.63. Found: C, 54.43; H, 5.70; N, 8.38.

N-(2'-(p-Methoxyphenylcarbamate)bibenzyl-2-yl)isobutylurea (9d). To a solution of 7d (22.8 mg, 0.043 mmol) in 1 mL of CHCl₃ were added Et₃N (8 µL, 1.3 equiv) and Me₃SiCl (6 μ L, 1.1 equiv). The reaction was shaken and kept at room temperature. After 10 min, 0.2 mL of isobutylamine was added. The reaction was determined by NMR to reach full conversion within this time, and although the isocyanate was not isolated, its presence was confirmed by IR spectroscopy (Ar NCO asymmetric strech 2272.5 cm⁻¹ (lit.⁴² PhNCO asymmetric stretch \sim 2275 cm⁻¹)). After the isobutylamine was allowed to react with the isocyanate for 1 min,⁴⁶ the reaction mixture was poured into a 1:2 mixture of 10% HCl/10% (NH₄)₂-SO₄. The organic layer was dried (MgSO₄) and concentrated under reduced pressure, and the resulting white solid was dissolved in CHCl₃ and evaporated in the presence of silica gel. The silica with adsorbed residue was loaded onto a column, and the residue was chromatographed (1:5 EtOAc/ CHCl₃). The product fractions were combined, washed with 10% NaOH ($2\times$) and water, dried (MgSO₄), and concentrated under reduced pressure to yield 9d (17.9 mg, 90%) as a white solid: mp >320 °C; ¹³C NMR (DMSO- d_{6} , 101 MHz) δ 156.54, 155.72, 153.55, 144.22, 137.65, 135.50, 131.20, 129.55, 128.74, 126.52, 126.21, 125.62, 122.76, 122.34, 121.83, 114.30, 55.41, 46.65, 30.92, 30.55, 28.58, 20.08; ¹H NMR (DMSO-d₆, 400 MHz) δ 9.50 (br s, 1H), 7.76 (dd, 1H, J = 8.2, 1.1 Hz), 7.67 (s, 1H), 7.44 (dd, 1H, J = 7.9, 1.0 Hz), 7.30 (dd, 1H, J = 7.5, 1.5 Hz), 7.23 (td, 1H, J = 7.7, 1.6 Hz), 7.20-7.06 (m, 5H), 6.97-6.91 (m, 3H), 6.53 (t, 1H, J = 5.8 Hz), 3.75 (s, 3H), 2.90 (t, 2H, J = 6.1 Hz), 2.90 (AA'BB', 2H, $\nu_A = \nu_{A'} = 1161.6$ Hz, $\nu_B = \nu_{B'}$ = 1114.8 Hz, $J_{AA'} = J_{BB'} = 14.0$ Hz, $J_{AB} = J_{A'B'} = 5.5$ Hz, $J_{AB'}$ $= J_{A'B} = 11.0$ Hz), 2.79 (AA'BB', 2H, as above), 1.66 (non, 1H, J = 6.7 Hz), 0.86 (d, 6H, J = 6.7 Hz); HRFABMS calcd for C₂₇H₃₂N₃O₄ (M+H)⁺ 462.2393, found 462.2394. Anal. Calcd for C₂₇H₃₁N₃O₄·¹/₃H₂O : C, 69.36; H, 6.83; N, 8.99. Found: C, 69.35; H, 6.78; N, 9.02.

Acknowledgment. We gratefully acknowledge NIH, PRF, American Heart Association, UIUC Research Board, and Critical Research Initiatives Program for financial support. We would like to thank Mr. Micheal Williams for assistance with melting point determinations.

JO981816+

⁽³⁸⁾ Baumgarten, H. E. J. Org. Chem. 1975, 40, 3554.

⁽³⁹⁾ Kita, Y.; Haruta, J.; Tagawa, H.; Tamura, Y. *J. Org. Chem.* **1980**, *45*, 4519.

⁽⁴⁰⁾ Witek et. al J. Prakt. Chem. 1979, 321, 804.

⁽⁴¹⁾ Rai, R.; Katzenellenbogen, J. A. J. Med. Chem. 1992, 35, 4150.

⁽⁴²⁾ LeCorre, M.; Hercouet, A.; LeStanc, Y.; LeBaron, H. Tetrahedron 1985, 41, 5313.

⁽⁴³⁾ The spectroscopic data were in agreement with the references: (a) Le Corre, M.; Hercouet, A.; Le Stanc, Y.; Le Baron, H. *Tetrahedron* **1985**, *41*, 5313. (b) Aboujaoude, E. E.; Collignon, N.; Savignac, P. *Tetrahedron* **1985**, *41*, 427.

⁽⁴⁴⁾ No $\,^{13}\text{C}$ NMR is reported because the compound was not sufficiently soluble in CHCl_3 and was not fully stable with more polar solvents.

⁽⁴⁵⁾ Pretsch, E.; Seibl, J.; Clerc, T.; Simon, W. *Tables of Spectral Data for Structure Determination of Organic Compounds*, 2nd ed.; Springer-Verlag: Berlin Heidelberg, 1989; p 275.

⁽⁴⁶⁾ The short reaction time was necessary to prevent isobutylamine from reacting with the *p*-methoxyphenyl carbamate, which would have resulted in formation of the bis-urea.